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Abstract 

In non-life insurance, the distinctive challenge of estimating the count variable of interest at 

inception, coupled with the variability of claim costs generally gives insurance companies 

considerable concern about the chances and sizes of large claims, particularly for automobile 

insurance where it is required to manage large number of scenarios with a wide variety of 

risks. These count variables of losses represent individual risks, and need to be predicted, 

predominantly when the risk premium is to be computed for new policyholders, or when future 

premiums are adjusted based on past experience. Statistical modelling of count data therefore 

denotes a fundamental step in pricing of non-life insurance as it allows the classification of the 

risk factors and the estimation of the expected frequency of claims given the risk 

characteristics. This study presents the actuarial modelling of motor insurance claim 

occurrence using Nigerian motor insurance portfolio, to verify and estimate empirically an 

econometric model and the risk factors influencing the frequency of claims. The log-likelihood 

ratio and the information criteria was used in choosing the best model and the profile of 

policyholders with the highest degree of risk is determined. The modelling results are suggested 

for insurance companies in establishing fair and equitable risk pricing as this will help in 

appropriate premium determination, alleviate the effect of possible adverse selection and 

ensure premiums stability in the individual and aggregate portfolio. 
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1. INTRODUCTION 

The distinctive challenge of estimating the cost of insurance at inception, coupled with the 

variability of claim costs generally gives insurance companies considerable concern about the 

chances and sizes of large claims, particularly for automobile insurance where it is required to 

manage large number of scenarios with a wide variety of risks. A major task of an actuary is 

the design of a tariff that fairly distributes the burden of claims among policyholders as the 

insurers aim to sell coverage at prices that are sufficient enough to compensate for the cost of 

capital necessary to support the sale of such coverage (Mesike, Adeleke & Ojikutu, 2019). In 

non-life insurance, for instance, the count variable of interest may possibly be the number of a 

claim made on a motor vehicle insurance policies or the number of losses due to the insurer or 

the insured in a year. These count variables of losses represent individual risks, and need to be 

predicted, predominantly when the risk premium is to be computed for new policyholders, or 

when future premiums are adjusted based on past experiences.  

 

A foremost technique in determining the basic elements of the risk premium is multiplying the 

conditional expectation of the claim frequency with that of the expected cost of claims. Thus, 

according to David and Jemna (2015), statistical modelling of count data therefore denotes a 

fundamental stride in pricing of non-life insurance.  Boucher and Guillen (2009) posited that 

count regression analysis allows the classification of the risk factors and the estimation of the 

expected frequency of claims given the risk characteristics. Given the economic importance of 

motor liability insurance in industrialized countries, many attempts have been made over the 

years within the actuarial literature to find a probabilistic model for the distribution of the 

number of claims reported by insured drivers (see for example, Nelder & Wedderburn, 1972; 

Gourieroux, Monfort & Trognon, 1984a, 1984b; Hausman, Hall & Griliches, 1984; McCullagh 
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& Nelder, 1989; Dionne & Vanasse, 1989, 1992; Gourieroux & Jasiak, 2004; Jong & Heller, 

2013; Antonio & Valdez,2012; David, 2015; Mesike, Adeleke & Ojikutu 2020).  

 

A major improvement in the development of models for count data according to Cameron and 

Trivedi (1988) is the emergence of Generalized Linear Models (GLMs). The theory and 

application advantages of the Poisson regression, which is a special instance of GLMs were 

developed by Nelder and Wedderburn (1972). A comprehensive analysis of the Poisson model 

was further explored in the works of Gourieroux et al. (1984a) and Hausman et al. (1984). 

Cameron and Trivedi (1998) demonstrated the particularities of Poisson regression approach 

in modelling claim frequency as a particular case of GLMs. Many studies within non-life 

insurance literature have underscored the theoretical and practical features of the GLMs 

technique (Poisson models) in estimating the frequency of insurance claims (see for example, 

Jong & Heller, 2013; Frees, 2010, Antonio & Valdez, 2012).  

 

In spite of its prevalence as a foundation in the analysis of count data, due to its descriptive 

adequacy in the presence of randomness and the underlying homogeneity assumption, the 

Poisson regression model imposes a strong constraint of equidispersion. This makes it often 

inappropriate because of unobserved heterogeneity and failure of the independence assumption 

if the data consist of repeated observations on the same policyholders. (see, Hausman et al. 

1984; Cameron & Trivedi, 1999; Vasechko, Grun-Rehomme & Benlagha, 2009; Gourieroux 

& Jasiak, 2001; Charpentier & Denuit, 2005; Jong & Heller, 2013; Hilbe, 2014; David & Jemna 

2015; Mesike et al. 2020). One of the well-known consequences of unobserved heterogeneity 

in count data analysis is that the variance of the count variable always exceeds the mean 

(overdispersion). Other justification is presented by Jong and Heller (2013) who called the 
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overdispersion as extra-Poisson variation because this type of data displays far greater variance 

than that predicted by the Poisson model.  

 

Failing to account for this overdispersion according to Denuit, Xavier, Pitrebois, and Walhin, 

(2007), yields underestimated standard errors, thereby conveying erroneously high levels of 

significance which might produce too many risk classes in a portfolio. A convenient way to 

take this overdispersion into account is by introducing a random effect and the alternative 

distributions used mostly to correct the phenomenon are known as compound or mixed Poisson 

distribution (see, Gourieroux et al. 1984a; 1984b; Dionne & Vanasse, 1989; Cameron & 

Trivedi, 1986; 1990, 1998; Winkelmann, 2004; Denuit, et al. 2007; Greene, 2008; Boucher, 

Denuit & Guillen, 2008; Hilbe, 2014). Poisson mixtures are well-known counterparts to the 

simple Poisson distribution for the description of inhomogeneous populations. In this case the 

probability distribution of the population can be regarded as a finite mixture of Poisson 

distributions. It is traditional to allow for unobserved heterogeneity by superposing a random 

variable (called a random effect) on the mean parameter of the Poisson distribution, yielding a 

mixed Poisson model. In a mixed Poisson process, the annual expected claim frequency itself 

becomes random.  

A particular instance of this mixture model is the negative binomial distribution which is used 

widely, possibly because of its appealing properties and efficient techniques to relax the 

limitation of the Poisson distribution. There exists extant literature on many ways to construct 

the negative binomial distribution, of which the approach (NB1 and NB2) introduced by 

Cameron and Trivedi (1998) is widely used. A comprehensive image regarding the mixed 

Poisson model is given by Denuit et al. (2007), where they presented the negative binomial 

distribution as a satisfactory alternative to Poisson distribution in modeling the claim frequency 

for a motor insurance portfolio. Boucher, Denuit & Guillen (2007) uphold, using cross-
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sectional data that the extra parameter of the negative binomial distribution enhances the fit of 

data when compared with the Poisson distribution. For more excellent description of claim 

frequency distributions regarding longitudinal data see Boucher et al (2008), Boucher and 

Guillen (2009) and Antonio and Valdez (2010), where they underscored the theoretical and 

practical application of negative binomial models for motor insurance data.  

 

David and Jemna (2015) applied the negative binomial models (NB) to French motor insurance 

data and concluded that the NB models correct the overdispersion, and provide a better fit to 

the data in comparison to the Poisson model while Mesike et al (2020) using Nigerian motor 

insurance data, employed the negative binomial model to relax the equidispersion restriction 

of the Poisson model to estimate the average expected loss for determining equitable premium. 

This study presents the actuarial modelling of motor insurance claim frequency using Nigerian 

motor insurance portfolio to estimate empirically an econometric model for claim frequency.  

 

2. DATA AND METHODS 

Frequency modelling 

The Poisson regression model is often suggested for count data but found to be inadequate  

because the data displays far greater variance than that predicted by the Poisson. Thus a Poisson 

model for the number of claims is inappropriate since the observed variance is much larger 

than the mean (Denuit et al. 2007). One alternative to Poisson regression is negative binomial 

regression. Within the actuarial literature, it has been shown that the negative binomial 

distribution may be viewed as a statistical model for counts, in the situation where 

overdispersion is explained by heterogeneity of the mean over the population (see, Denuit et 

al. 2007; Jong & Heller, 2013; David & Jemna, 2015; Mesike et al. 2020). Another alternative 

choice is the quasi-likelihood (Poisson variance). The negative binomial is intuitively more 
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appealing than quasi-likelihood, because it explains the mechanism underlying the 

overdispersion. In recent years the negative binomial has gained popularity as the distribution 

of choice when modelling overdispersed count data in many fields, possibly because of its 

simpler computational requirements and its availability in standard software. 

 Extant literature present various ways of constructing the negative binomial distribution, 

nevertheless Boucher, Denuit and Guillen (2008) argued that an intuitive way is the 

introduction of a random heterogeneity term 𝜃 with mean 1 and variance 𝛼 in the mean 

parameter of the Poisson distribution. For an intensive discussion of this approach see 

Gourieroux et al. (1984a), Cameron and Trivedi (1990, 1998).  

Poisson Model 

Cameron and Trivedi (1998) demonstrated the particularities of Poisson regression approach 

in modelling claim frequency as a particular case of GLMs. With Poisson regression, the mean 

μ is explained in terms of explanatory variables x via an appropriate link,  

If 𝑦 ∼ 𝑃(𝜇) 

𝑓(𝑦) = 𝜇𝑦 𝑒−𝜇

𝑦!
   ,          𝑦 = 0,1,2, … .,              (1)  

Within the framework of GLMs, the mean of the response variable is related to the linear 

predictor through the log link function: 

               g(𝜇) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

=  𝑥𝑖
, 𝛽                                                                       (2)                

The estimation of the parameters is done by maximum likelihood and the likelihood function 

is defined as follows: 

ℒ(𝛽) = ∏
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
=

𝑛

𝑖=1

 ∏
𝑒−𝑒𝑥𝑖𝛽

(𝑒𝑥𝑖𝛽)𝑦𝑖

𝑦𝑖!
                                                (3)

𝑛

𝑖=1

 

Using logarithm in both sides, the log-likelihood function is obtained as follows: 
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𝐿𝐿(𝛽) = ∑(𝑦𝑖𝑙𝑛𝜇𝑖 − 𝜇𝑖 − 𝑙𝑛𝑦𝑖!)                                

𝑛

𝑖=1

                               

= ∑(𝑦𝑖𝑥𝑖𝛽 − 𝑒𝑥𝑖
, 𝛽 − 𝑦𝑖!)

𝑛

𝑖=1

                                                               (4) 

The first two partial derivatives of the log-likelihood function which exists can be expressed 

as follows: 

𝜕𝐿𝐿(𝛽)

𝜕𝛽𝑗
= ∑(𝑦𝑖 − 𝜇𝑖)𝑥𝑖𝑗

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝑒𝑥𝑖
, 𝛽)𝑥𝑖𝑗

𝑛

𝑖=1

                            (5) 

𝜕2𝐿𝐿(𝛽)

𝜕𝛽𝑗𝛽𝑘
= − ∑ 𝜇𝑖𝑥𝑖𝑗𝑥𝑖𝑘 = − ∑(𝑒𝑥𝑖

, 𝛽𝑥𝑖𝑗𝑥𝑖𝑘)                             (6)

𝑛

𝑖=1

𝑛

𝑖=1

 

The maximum likelihood estimators 𝛽̂𝑗 are the solutions of the likelihood equations obtained 

by differentiating the log-likelihood with respect to the regression coefficients and solving 

them to zero. The resulting equation forming the system is solved numerically by using iterative 

algorithm such as Newton-Raphson or Fisher information (see, Charpentier & Denuit, 2005). 

Though Poisson distribution is often considered as a benchmark model in modelling claim 

count but in practice there are some idiosyncratic risks related to individual insurance contract 

that make the underlying assumption of the model seem quite unrealistic (see, Gourrieroux & 

Jasiak, 2007; Jong & Heller, 2013; David &Jemna, 2015).  

Negative Binomial 

Within the actuarial literature, the negative binomial distribution is employed as a functional 

form that relaxes the equidispersion restriction of the Poisson model. The negative binomial is 

derived from a Poisson-gamma mixture distribution.  Given 𝜆, if the count 𝑦 is Poisson 

distributed;    𝑦|𝜆~𝑃(𝜆) ⇒ 𝑓(𝑦|𝜆) =
𝑒−𝜆𝜆𝑦

𝑦!
 

Suppose 𝜆 is a continuous random variable with probability density function (pdf) 𝑔(𝜆) where 

𝑔(𝜆) = 0 for 𝜆 < 0, then the unconditional pdf of 𝑦 is 
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𝑓(𝑦) = ∫ 𝑓(𝑦|𝜆)
∞

0

𝑔(𝜆)𝑑𝜆                                                           (7) 

If 𝜆~𝐺(𝜇, 𝜐),   

𝑓(𝑦) = ∫
𝑒−𝜆𝜆𝑦

𝑦!

𝜆−1

Γ(𝜈)
(

𝜆𝜈

𝜇
)

𝜐

𝑒−𝜆𝜈/𝜇𝑑𝜆
∞

0

                                                                

=
1

𝑦! Γ(𝜈)
(𝜈

𝜇⁄ )
𝜈

∫ 𝜆𝑦+𝜈−1
∞

0

𝑒
−𝜆(1+

𝜈

𝜇
)
𝑑𝜆                                            

=
Γ(𝜈 + 𝑦)

𝑦! Γ(𝜈)
(

𝜈

𝜈 + 𝜇
)

𝜈

(
𝜇

𝜈 + 𝜇
)

𝑦

    𝑦 = 0,1,2, ….                     (8) 

Substituting 𝜅 = 1/𝜈 results in the 𝑁𝐵(𝜇, 𝜅) (see, Jong & Heller, 2013). The first two moments 

of the negative binomial are 𝐸(𝑦) = 𝜇, 𝑉𝑎𝑟(𝑦) = 𝜇(1 + 𝜅𝜇). The maximum likelihood 

estimator is the standard estimator for this model and the log-likelihood function is given as: 

𝐿𝐿(𝜈, 𝛽) = ∑ {− log(𝑦𝑖) + ∑ log(𝜈𝑦𝑖 − 𝑘𝜈 + 1) −

𝑦𝑖

𝑘

(𝑦𝑖 + 𝜈−1) log(1 + 𝜈𝜇𝑖) + 𝑦𝑖log (𝑦𝑖)} (9)

𝑛

𝑘=1

 

Criteria for Assessing the Models’ Goodness of Fit 

There exists many statistics in the literature that can be used to select and measure the 

performance of count regression models, however Denuit and Lang (2004) described the 

likelihood ratio (LR) as the standard measure of goodness of fit for assessing the adequacy of 

various models. The test statistics follows a 𝜒𝛼,𝑝
2  distribution for a significance level 𝛼 of 0.05 

and 𝑝 degrees of freedom, where 𝑝 represents the number of explicative variables included in 

the regression model. This statistics test is obtained from the difference between the deviance 

of the regression model without covariates (𝐷0) and that of the deviance of the model including 

the independent variables (𝐷𝑝): 

                    𝐿𝑅 = 𝐷0 − 𝐷𝑝                                                                                            (10) 
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The deviance was defined by Charpentier and Denuit (2005) as twice the difference between 

the maximum log-likelihood 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒(𝑦𝑖 − 𝜆𝑖) and the log-likelihood of the fitted model: 

           𝐷 = 2(𝐿𝐿(𝑦𝑖|𝑦𝑖) − 𝐿𝐿(𝑦𝑖|𝑦𝑖)                                                   (11)   

A likelihood ratio value that is higher than the statistics theoretical value (𝐿𝑅 > 𝜒𝛼,𝑝
2 ) 

indicates that the regression model explains well the fitted data. For comparison of the 

models, the log-likelihood function based test is used as a standard method of comparison 

between the Poisson and NB model. The test statistic follows the 𝜒2 distribution with one 

degree of freedom and a calculated test value higher than the theoretical value (𝐿𝑅 > 𝜒2𝛼,1
2 ) 

indicates that the NB model is chosen over the Poisson regression. 

Data 

The data used were extracted from the registered policies of motor insurance portfolio obtained 

from a Nigerian insurance service provider during the year 2018. The data set comprises 15,979 

policies and the covariates considered in the policies are the explanatory variables used for this 

study which reflects the insured characteristics: policyholder’s age ( <24 years, 24-30 years, 

31-60 years and > 60 years), gender (male, female, entity, couple), occupation (self-employed, 

publicly-employed, privately-employed, unemployed), the geo-political zone where the 

policyholder lives (federal capital territory, south-west, south-east, south-south, north-west, 

north-east, north-central), product type (commercial vehicle, comprehensive, third party, 

motorcycle), customer type (individual, companies, government, others account), nature of loss 

(theft, collision, accident, vandalisation, others). The preliminary descriptive analysis of the 

data showing the frequency distribution of policyholder in the portfolio is presented in Table 

1. The observed mean claim frequency and mean claim cost for the portfolio are 14.09% and 

284117.71 naira respectively. The age structure of the portfolio as described in Table 1 shows 

that most policyholders were middle-aged as 7730 insured drivers representing 48.4% of the 

portfolio were in the age bracket of 31 and 60 years. Only 1458 insured drivers signifying 9.1% 
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of the portfolio were over 60 years. The young drivers represent 28% of the portfolio (4472), 

and the remaining 2318 insured drivers (14.5% of the portfolio) were in the age range of 24 to 

30 years. There were 9672 male policyholders (representing 60.5 % of the portfolio) and 4958 

female policyholders (representing 31.0 % of the portfolio) while it is 1248 for an entity and 

100 for couples (representing 7.8% and 0.6 % of the portfolio respectively).   

Table 1: Frequency distribution of policyholder in the portfolio 

 Variables         Frequency 

 

Percentage 

Age group      

  Less than 24 years  4472 28.0 

  24 - 30 years  2318 14.5 

  31 - 60 years  7730 48.4 

  61 years and Above  1458 9.1 

Gender      

  Male  9672 60.5 

  Female  4958 31.0 

  Entity  1248 7.8 

  Couple  100 .6 

Geo-political zone      

  FCT  976 6.1 

  South-west  13144 82.3 

  South-east  327 2.0 

  South-south  981 6.1 

  North-east  57 .4 

  North-west  296 1.9 

  North-central  197 1.2 

Occupation      

  Self-employed  1340 8.4 

  Publicly employed  6078 38.0 

  Privately employed  8210 51.4 

  Unemployed  350 2.2 

Product type      

  Commercial Vehicle  2783 17.4 

  Comprehensive  12520 78.4 

  Third party  641 4.0 

  Motorcycle  34 .2 

Nature of loss      

  Theft  306 1.9 

  Collision  14261 89.3 

  Accident  391 2.4 

  Vandalisation  767 4.8 

  Others  253 1.6 

Customer type      

  Individual  13283 83.1 

  Companies  2611 16.3 

  Government  77 .5 

    All account   7 .0 

Source: Author’s computation       
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3. RESULTS AND DISCUSSION 

Descriptive Statistics for the Insured Portfolio 

The preliminary exploratory data analysis shows that motor liability clim data are heavily tailed 

and highly peaked. The distribution of the claim frequency suggests that the portfolio is 

heterogeneous. From Table 2, it can easily be seen that on the average the frequency of claim 

reported by the insured decreases initially with age and then increases along the age group. 

This may be attributed to the fact that younger drivers on average have less driving experience 

and take more risks, while older individuals on the other hand are riskier drivers due to a 

deterioration of their cognitive and sensory skills (Kelly & Nielson, 2006). From the 

exploratory data analysis result displayed in Tables 2 to 4, very positive skewness and heavy 

tailed kurtosis were observed for all the rating factors. Surprisingly, the mean claim frequency 

for female was higher than for male and the female policyholders tends to report more claim 

than their male counterpart as presented in Table 3. The mean number of claims per product 

type was 24.91 for commercial vehicle, 10.72 in an auto comprehensive, 33.32 in third party 

liability and 6.26 for a motorcycle. On average, policyholders paid annual premiums of 

9453698 naira in commercial vehicle, 1248764 naira in auto comprehensive, 20762294 naira 

in auto third party liability and 658981 in motorcycle. 

Table 2: Descriptive analysis of claim cost, claim frequency and premiums by age group 
AGE GROUP Mean N Std. Deviation Kurtosis Skewness 

< 24 years       

 
CLAIM 
FREQUENCY 

19.46 4472 39.524 11.676 3.320 

 PREMIUM 7229804.8883 4472 13834803.33631 9.494 2.963 

24 - 30 
years 

 
     

 
CLAIM 
FREQUENCY 

9.08 2318 20.209 32.306 5.003 

 PREMIUM 76074.0459 2318 114142.64100 114.794 9.288 

31 - 60 
years 

 
     

 
CLAIM 
FREQUENCY 

10.65 7730 25.706 30.778 5.119 

 PREMIUM 115915.6951 7730 228360.25275 333.667 14.811 

≥61 years        

 
CLAIM 
FREQUENCY 

23.78 1458 48.159 7.671 2.870 

  PREMIUM 15000794.3528 1458 25093219.11026 .539 1.544 

Source: Researcher’s computation  
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Table 3: Descriptive analysis of claim cost, claim frequency and premiums by gender 

GENDER Mean N Std. Deviation Kurtosis Skewness 

Male       

 CLAIM FREQUENCY 13.04 9672 30.293 22.010 4.404 

 PREMIUM 2839125.8332 9672 10913413.8530 27.765 5.256 

Female       

 CLAIM FREQUENCY 15.36 4958 34.884 16.641 3.923 

 PREMIUM 5258711.5213 4958 13912482.8924 11.478 3.373 

Entity       

 CLAIM FREQUENCY 17.76 1248 38.753 14.859 3.732 

 PREMIUM 1388533.5632 1248 2333449.62718 6.463 2.584 

couple       

 CLAIM FREQUENCY 6.26 100 11.105 17.809 3.912 

  PREMIUM 96069.1945 100 82334.89117 8.006 2.182 

Source: Researcher’s computation  

 

 

 

Table 4: Descriptive analysis of claim cost, claim frequency and premiums by product type 

PRODUCT TYPE 
Mean N Std. Deviation Kurtosis 

Skew
ness 

      

Commercial 

Vehicle 

      

 CLAIM 

FREQUENCY 

24.91 2783 47.319 7.647 2.828 

 PREMIUM 9453698.6903 2783 19496649.0307 4.494 2.451 

Comprehensive       

 CLAIM 

FREQUENCY 

10.72 12520 25.639 29.731 5.007 

 PREMIUM 1248764.7010 12520 6138406.65700 111.524 9.683 

Third party       

 CLAIM 
FREQUENCY 

33.32 641 50.857 4.327 2.183 

 PREMIUM 20762294.4163 641 20224342.8616 -1.630 .441 

Motor Cycle       

 CLAIM 

FREQUENCY 

6.26 34 19.111 25.127 4.877 

  PREMIUM 658981.0382 34 539777.63776 -1.905 .134 

Source: Researcher’s computation 

The SPSS GENLIN procedure which enables the use of type 3 analyses that allows the impact 

assessment of each risk factor, considering all other explanatory variables is used to fit the 

Poisson and NB regression models in the framework of GLMs.  

Poisson model 

The type 3 analysis provides the values of Chi-square statistics for each variable by calculating 

two times the difference between the log-likelihood of the model which includes all the 

independent variables and the log-likelihood of the model obtained by deleting one of the 

specified variables. This test statistic value the impact of each risk factor on the studied interest 

and follow the asymptotic 𝜒2 distribution with 𝑝 degrees of freedom, representing the number 

of parameters related to the analysed variable. The results of the type 3 analysis are presented 
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in Table 5. The p-value column indicates the probability associated to the likelihood ratio test 

which appreciates the impact of each risk factor on the studied event. It can be observed that 

all the rating variables are statistically significant with a p-value (<.0.05), which clearly 

underlines their influence on the claims frequency. 

Table 5: Likelihood Ratio Statistics for Type 3 Analysis 

Source Likelihood Ratio Chi-Square df P-value 

(Intercept) 787.572 1 .000 

Age 2520.802 3 .000 

Gender 419.494 3 .000 

District 385.777 6 .000 

Occupation 1008.901 3 .000 

Product type 18012.051 3 .000 

Loss type 37553.284 4 .000 

Customer 
type 

648.441 3 .000 

Source: Researcher’s computation  

 

 

The goodness-of-fit statistics displayed in Table 6 provides measures that are useful for 

comparing competing models. Additionally, the Values for the Deviance and Pearson Chi-

Square statistics divided by its degree of freedom gives corresponding estimates for the scale 

parameter. To verify if the data are overdispersed, the most common way is the interpretation 

of the deviance and Pearson statistics values. These values should be near 1.0 for a Poisson 

regression; the fact that they are greater than 1.0 (28.877 and 57.799 respectively) indicates 

an inequality between the mean and variance of the claim frequency, and thus the 

overdispersion hypothesis is confirmed.  

Table 6: Goodness of fit test 

Criterion Value df Value/df 

Deviance 460638.564 15952 28.877 

Pearson Chi-Square 922017.507 15952 57.799 

Log Likelihood -256858.784   

Akaike's Information Criterion (AIC) 513769.568   

Finite Sample Corrected AIC (AICC) 513769.656   

Bayesian Information Criterion (BIC) 513969.222   

Consistent AIC (CAIC) 513995.222     
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A formal test to determine whether there is overdispersion is to perform a likelihood ratio test 

between a standard Poisson regression and a negative binomial regression with all other 

settings equal. With a negative binomial fit, an estimated 𝜅 close to zero suggests a Poisson 

response. A formal test of 𝜅 = 0 is based on the likelihood ratio test. Since 𝜅 = 0 is at the 

boundary of the possible range 𝜅 ≥ 0, the distribution of the test statistic is non-standard and 

requires care. The likelihood ratio test statistic is −2(𝑃 − 𝑁𝐵), where 𝑃 and 𝑁𝐵 are the values 

of the log-likelihood under the negative binomial and Poisson models, respectively. The 

distribution of the statistic has a mass of 0.5 at zero, and a half Chi-square one degree of 

freedom distribution above zero. A test at the 100𝛼% significance level, requires a rejection 

region corresponding to the upper 2𝛼 point of the Chi-square one degree of freedom 

distribution (Cameron and Trivedi 1998).The Poisson and negative binomial regressions yield 

𝑃 = −256858.784 and 𝑁𝐵 = −56092.990. Hence the likelihood ratio statistic 

is 401531.588. The hypothesis 𝜅 = 0 is rejected, at all significance levels. The conclusion is 

that overdispersion is indeed present. For a significance level 𝛼 = 0.05, the hypothesis 𝜅 = 0 

is rejected if the likelihood ratio statistic is greater than the upper 10% point of the Chi-square 

one degree of freedom distribution, which is 2.71. The test statistics suggest very strong 

evidence against the fit of the Poisson model to the data, hence the need for the alternative 

mixed model. 

Negative binomial 

Table 7, 8, and 9 present the result of the claim frequency modelling based on the negative 

binomial model. The results show that the different age groups, gender, occupation, district, 

product type, loss type and customer type are significant in determining the frequency of claims 

reported. Considering the goodness of fit tests, the results presented indicate that the fitted 

model is significant at the value/df column for the Pearson chi-square test. The result of the 

type 3 analysis presented in Table 8 shows that all the predictor variables is statistically 

significant. The table includes the six degree of freedom test which indicates that as a whole, 

the rating variable district is a significant predictor of the number of claims occurrence. There 
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is a significant improvement of the fitted model over the model without any predictors as 

indicated by the p-value when the overall model is tested against the null model using the 

likelihood ratio chi-square test. 

 

Table 7: Goodness of fit test 

Criterion Value df Value/df 

Deviance 29164.489 15952 1.828 

Pearson Chi-Square 68622.029 15952 4.302 

Log Likelihood -56092.990   

Akaike's Information Criterion (AIC) 112237.979   

Finite Sample Corrected AIC (AICC) 112238.067   

Bayesian Information Criterion (BIC) 112437.633   

Consistent AIC (CAIC) 112463.633   

Source: Researcher’s computation  

 

Table 8: Wald Statistics for Type 3 Analysis 

Source 

Wald Chi-

Square df P-value 

(Intercept) 387.920 1 .000 

Age 183.715 3 .000 

Gender 23.978 3 .000 

District 36.240 6 .000 

Occupation 116.094 3 .000 

Product type 836.374 3 .000 

Loss type 1469.071 4 .000 

Customer type  86.584 3 .000 

LR Chi-Square: (5406.714, p-value<0.000)    

 

Analysing the results presented in Table 7, it is noted that the value of deviance and Pearson 

divided by the number of degrees of freedom are now closer to 1.0 (1.828 and 4.302 

respectively). This is a significant improvement over the Poisson model. The analysis of 

parameter estimates table contains the Poisson and NB regression coefficients for each of the 

predictor variables along with their standard errors, Wald chi-square values and p-values for 

the coefficients. Analyzing the result from Table 9, a decrease of the claims frequency can be 

observed along with an increase in the age of the insured. On the contrary, when the gender 

coefficient increases, the frequency of claims increases as well. Furthermore, there is an 

estimate of the dispersion coefficient, (Negative binomial). The parameter 95% confidence 

interval does not include zero, suggesting that the model fitted is more appropriate than the  

 



Nigeria Journal of Risk and Insurance  Vol. 11 No. 1 (2021) 

169 
 

Poisson. 

Table 9 : Analysis of Parameter Estimates 

 Poisson Negative Binomial  

Parameter Estimate 
Std. 

Error 

Wald 
Chi-

Square 
P-

value Estimate 
Std. 
Error 

Wald 
Chi-

Square P-value 

(Intercept) 0.659 0.172 14.661 0.00 0.672 0.4782 1.977 0.16 

<24 years 
-0.114 0.007 262.616 0.00 

-0.01 0.0341 0.092 0.76 

24 - 30 years -0.498 0.0111 2018.28 0.00 -0.437 0.0448 95.416 0.00 

31 - 60 years -0.389 0.009 1872.95 0.00 -0.341 0.0399 72.874 0.00 

≥61 years 
0a    0a    

Male 
0.374 0.0402 86.774 0.00 

0.408 0.1093 13.944 0.00 

Female 
0.444 0.0403 121.714 0.00 

0.452 0.11 16.868 0.00 

Entity 
0.322 0.0409 62.136 0.00 

0.357 0.1142 9.749 0.00 

Couple 
0a    0a    

FCT 
0.325 0.0249 170.439 0.00 

0.196 0.0831 5.553 0.02 

South-west 0.259 0.0234 121.855 0.00 0.045 0.0766 0.352 0.55 

South-east 
0.408 0.0272 224.298 0.00 

0.144 0.0958 2.273 0.13 

South-south 0.329 0.0251 172.113 0.00 0.181 0.0832 4.743 0.03 

North-east 0.191 0.0456 17.525 0.00 0.134 0.1593 0.703 0.40 

North-west 0.15 0.0291 26.731 0.00 -0.039 0.0979 0.158 0.69 

North-central 0a    0a    

Self- employed 
0.086 0.017 25.543 0.00 

0.192 0.0637 9.042 0.00 

Publicly- employed 0.087 0.016 29.827 0.00 0.183 0.0607 9.069 0.00 

Privately-employed 
-0.094 0.0156 36.444 0.00 

-0.041 0.0579 0.491 0.48 

Unemployed 
0a    0a    

Commercial  vehicle 
1.523 0.0687 491.621 0.00 

1.561 0.1879 69.045 0.00 

Comprehensive 
0.873 0.0687 161.364 0.00 

0.922 0.1875 24.196 0.00 

Third party 
1.801 0.069 680.118 0.00 

1.8 0.192 87.95 0.00 

Motor cycle 
0a    0a    

Theft 
2.205 0.0249 7864.76 0.00 

2.231 0.0891 626.905 0.00 

Collision 
0.408 0.0238 293.155 0.00 

0.344 0.0683 25.267 0.00 

Accident 
1.147 0.0262 1914.12 0.00 

1.121 0.0856 171.493 0.00 

Vandalisation 
-0.183 0.0286 40.726 0.00 

-0.187 0.0785 5.704 0.02 

Others 
0a    0a    

Individual 
0.011 0.1476 0.006 0.94 

0.04 0.4067 0.01 0.92 

Companies 
0.035 0.1477 0.055 0.81 

0.103 0.4078 0.063 0.80 

Government -1.081 0.1567 47.565 0.00 -1.115 0.427 6.815 0.01 

All account 0a    0a    

(Scale) 
1b    1b    

(Negative binomial)     1.71 0.0175   

Dependent Variable: CLAIMS FREQUENCY 

a. Set to zero because this parameter is redundant. 

b. Fixed at the displayed value. 

Source: Researcher’s computation  
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4. CONCLUSIONS 

The basic idea of the entire process of non-life insurance pricing comprises of establishing an 

equitable premium payable by the policyholder for transferring contingent risk to the insurer. 

A major step in motor insurance pricing is the modelling of claim frequency which is very 

germane in determining a reasonable and equitable price. Hence, this study considered the 

analysis of classical and mixed count data models used to estimate the frequency of claim 

reported on motor insurance policies, using individual socio-demographic characteristics and 

motor risk factors.  

A distinct analysis procedure that allows the impact assessment of each risk factor while 

considering all other explanatory variables was used to fit the Poisson and NB regression 

models in the framework of GLMs. The equidispersion assumption of Poisson distribution was 

tested and the test statistic indicates an inequality between the mean and variance of the claim 

frequency, and thus existence of overdispersion within the studied motor insurance portfolio. 

The NB model was used to correct the overdispersion and the test result showed that NB model 

provides a better fit to the motor insurance data compared to the Poisson model. 

Using past claim data, the regression results revealed that the risk factors: the age of the insured, 

the gender, the geographical region where the insured resides, the occupation of policyholders, 

the product type, the nature of the loss and the customer type significantly explain the frequency 

of motor claims occurrence. The descriptive statistics shows that motor insurance claims data 

is highly peaked and heavily-tailed and also differ considerably across age groups, gender, 

occupation, nature of loss, geographical region, product type and customer type. The obtained 

results revealed that the frequency of claim decreases on the average with age initially but then 

increases along the age group, which support the fact noted in studies such as McKnight and 

McKnight (1999, 2003), Kelly and Nielson (2006) that younger motorists on the average have 
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more claims due to less driving skill and ability to take more risks, while older individual on 

the other hand are more dangerous drivers because of worsening cognitive and sensory skills.  

The modelling results are suggested for insurance companies in establishing fair and equitable 

risk pricing. It will help in appropriate premium determination, alleviate the effect of possible 

adverse selection and ensure premiums stability in the individual and aggregate portfolio. 

Feasible and sustainable motor liability insurance needs to be risk-based driven; hence pricing 

it involves thoughtful research and careful analysis of the complex function, and a large number 

of more detailed variables that need to be properly established and actuarially determined. This 

will enable motor insurance risks to be determined on a sustainable basis, and helps emerging 

economies improve their response to the challenge presented by motoring. 
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