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ABSTRACT 

In the literature, a large number of factors are mentioned as being responsible for the relative 

strength or weakness of a country’s currency with respect to the currencies of other nations. Many 

of these variables are usually highly correlated with each other leading to the twin problems of 

multicollinearity and redundancy in the explanatory variables.This study examines the main 

determinants of currency exchange rates, and applies Principal Components Analysis (PCA) and 

Singular Value Decomposition (SVD) to Naira/USD data regarding the factors responsible for the 

steady deterioration in the Naira/USD exchange rates over time. The aim is to rank the factors in 

order of importance and impact on the Naira/USD exchange rate in the Nigerian environment, as 

such ranking may not be of universal application in all countries. The study uses Machine 

Learning algorithms to achieve dimensionality reduction and thus address the problem of 

multicollinearity and high dimensionality. The study found that three principal components 

adequately explain more than seventy percent of the variance, thereby making it unnecessary to 

use more than three explanatory variables in similar studies predicting the evolution of currency 

exchange rates. In this study the number of explanatory variables was drastically reduced from 

twenty-one to just three, while solving the problem of multicollinearity.  

Keywords: Exchange rates, Dimensionality reduction, Machine Learning, Principal components. 
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1. INTRODUCTION  

Currency exchange rate fundamentally influences the direction of economic activities in a country. 

It is an important variable that affects the performance of other macro-economic variables in 

achieving economic growth and development (Oke, 2018). 

In the literature, many factors are mentioned as responsible for the relative strength or weakness 

of a nation’s currency with respect to the currencies of other nations. Some of these factors include, 

but are not restricted to, the GDP, Inflation, Interest rates, Import cover, Exports, External reserves, 

Balance of Payments, Deposit and Lending rates, etc., among so many others (Rodrigues, 2020 ; 

Oke et. al. 2018). 

Many of these variables tend to be highly correlated with each other resulting in the problem of 

multicollinearity. A related problem is the issue of redundancy in the many related variables amid 

what has been described as the “curse of dimensionality”(Rahayu et al, 2017). This is the case 

where the number of variables is so large that, for meaningful analysis to be carried out, there is 

usually a need to reduce the number of variables in the analysis and focus only on the most 

important ones without losing much important information.This study aims to identify the 

optimum number of explanatory variables to use when modelling Naira/USD currency exchange 

rates. The objective here is to reduce the very large number of usually highly correlated 

independent variables mentioned in the currency exchange rate literature to a much smaller and 

manageable number of explanatory variables for meaningful analysis without losing much of the 

important information in the data set, while at the same time addressing the issue of 

multicollinearity. 
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According to Rahayu et. al (2017), the term Multicollinearity was first discovered by Frisch (1934) 

and indicates perfect linear relationship among some or all of the independent variables of a 

multiple regression model. Gujarati (2003) averred that multicollinearity can arise from variables 

influenced by the same factors. It can also arise from the use of lagged models e.g. strong 

correlation between 𝑦𝑡 and 𝑦𝑡−1, from data collection methods, as well as from overdetermined 

models I.e. where the number of explanatory variables is greater than data observations. 

Detecting multicollinearity can be achieved by calculating correlation coefficients among 

independent variables (e.g.where simple correlation coefficient exceeds 0.8). Multicollinearity can 

also be detected by calculating Variance Inflation Factor (VIF). For example where VIF > 10 

Tolerance (TOL) is also used calculate the size of multicollinearity e.g. where Tolerance < 0.1  

 𝑇𝑂𝐿𝑖 =
1

𝑉𝐼𝐹𝑖
=  1 − 𝑅𝑖

2 

Other measures for calculating multicollinearity include Eigenvalues and Conditions Index (CI). 

The impact of Multicollinearity can be addressed through Ridge Regression or PCA (both could 

be done to confirm ranking) 

2. REVIEW OF LITERATURE 

Currency exchange rate is a major indicator of a country’s level of economic health (Rodrigues, 

2020). Other important  economic indicators include inflation, interest rates, consumer price index 

and money supply. Volatile exchange rates could make it difficult to ascertain or forecast the value 

of goods and services in an economy thus resulting in an unstable economic environment that 

might militate against stable economic growth (Nwude, 2012; Ajao and Igbokoyi, 2013). Many 

macroeconomic variables tend to be strongly correlated with each other, thereby manifesting the 
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problem of multicollinearity (Rahayu et. al.,2017). This usually results in redundancy of variables 

leading to situations where researchers find themselves having to contend with too many 

explanatory variables in their analyses. 

 Rahayu et al (2017) used Principal component analysis to reduce multicollinearity in exchange 

rates of some Asian countries. They found that three main components had sufficient predictive 

power in their model. Oke and Adetan (2018) carried out an empirical analysis of the determinants 

of exchange rate in Nigeria. They used the Bound Test to find that Gross Domestic Product (GDP), 

Interest rate and Inflation had positive effects on the exchange rate in Nigeria. Regos (2015) 

modeled exchange rates using price levels and country risk in seven countries. The author 

concluded that sovereign risk has significant effect on exchange rates. Agu (2002) in Oke et. al. 

(2018) posits that the mechanism of exchange rate determination and the different systems of 

managing the exchange rate of a nation’s currency should be properly done to achieve efficient 

allocation of scarce resources for growth and development. Jhingan (2005) concluded that a 

country has to control its exchange rate in order to maintain internal and external balance. 

 

3. MATERIALS AND METHODS 

3.1 Data 

Monthly data on Exchange Rates, Balance of Payments, Inflation, Interest Rates, External 

Reserves, Deposit and Lending Rates, and other macro-economic variables mentioned in the 

literature as contributing to the determination of exchange rates were obtained from the Central 

Bank of Nigeria data base from 2008 to 2021 inclusive. 
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3.2 Methods 

Exploratory Data Analysis is carried out by Machine Learning tools using Python codes.  Principal 

Component Analysis (PCA) is then deployed using the same Machine Learning and Python 

computer package. Principal Component Analysis (PCA) is a powerful statistical instrument often 

deployed to overcome the problems of high dimensionality and multicollinearity among the 

explanatory variables.  

The objective of PCA is to obtain most of the important information present in the data even as 

the number of dimensions is reduced. This addresses the issue of what is known as the “curse of 

dimensionality”. The curse of dimensionality is when we have more dimensions than required i.e. 

too many dimensions or explanatory variables. More dimensions in a model can introduce 

multicollinearity and overfitting. 

When a model overfits, such model might fail to perform or predict in the presence of new or 

previously unseen data. PCA helps reduce redundancy in the dimensions. 

3.2.1 How PCA works. 

For two dimensional space, PCA essentially rotates the coordinate axes, such that one axis captures 

almost all the information content or variance previously present in both axes and the second axis 

can be discarded, thus reducing the number of dimensions from two to one while retaining most 

of the important information. Here two independent parameters 𝑋1 and 𝑋2 are fed into the model. 

In Python implementation, use: 

Model.fit(𝑋1, 𝑋2) 
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The model is initially capturing only the individual pieces of information available in the 

explanatory variables and not the joint spread which is far richer as it tells how the two variables 

vary together. The goal of PCA is to capture this covariance information to enrich the model. PCA 

is carried out in several steps: 

Step 1: Standardize the independent variables. 

This is achieved by applying Z-score to the data. This centers the data points to the origin. 

Ζ =  
(Xi − x̅)

σ
 

The z-score of 𝑋𝑖 indicates how many standard deviations away this 𝑋𝑖 value is from the central 

value or average. 

When 𝑋𝑖 > �̅�, z-score is positive 

When 𝑋𝑖 < �̅�, z-score is negative 

At origin, z-score is 0. 

Step 2: Generate the covariance matrix for each dimension. This captures all the covariance 

information among the dimensions. 

In the original two dimensional space, the data has averages �̅�1 and �̅�2 as well as covariance 

between 𝑋1 and 𝑋2. 

On standardizing the data points, the central values become the dimensions and the data is spread 

around them. 

Covariance between 𝑋1 and 𝑋2 is presented as a matrix: 
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[

𝑐𝑜𝑣(𝑋, 𝑋) 𝑐𝑜𝑣(𝑋, 𝑌) 𝑐𝑜𝑣(𝑋, 𝑍)
𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌, 𝑌) 𝑐𝑜𝑣(𝑌, 𝑍)
𝑐𝑜𝑣(𝑍, 𝑋) 𝑐𝑜𝑣(𝑍, 𝑌) 𝑐𝑜𝑣(𝑍, 𝑍)

] → [

𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎𝑃
2

] 

    𝐴𝐴𝑇    𝐵𝐵𝑇 

This matrix shows numerically the amount of information contained in the two dimensional space 

between 𝑋1 and 𝑋2. 

The diagonal elements represent the variance of 𝑋1 with itself  and 𝑋2 with itself indicating how 

much information is contained within each variable. 

The off-diagonal elements show the correlation between 𝑋1 and 𝑋2 i.e. the interaction with each 

other. This information serves as input for the model. 

Step 3: Eigen Decomposition 

Eigen decomposition transforms the original covariance matrix between 𝑋1  and 𝑋2  into the 

identity matrix.This matrix is empty, as all the information has been absorbed by the axis. The 

process yields two outputs- eigenvectors and eigenvalues. The eigenvectors are the new 

dimensions of the new mathematical space while eigenvalues indicate the information content of 

each eigenvector. This is the spread or the variance of the data on each eigenvector. 

Step 4: Sort corresponding eigenvectors and eigenvalues.Then multiply each matrix with its 

transpose to obtain the covariance matrix. 

The covariance matrix shows the amount of information contained in the mathematical space, and 

can be visually displayed on a pairplot using sns.pairplot() in Python language.The diagonal 

elements in the pairplot show the relationship between each variable and itself. The off-diagonal 
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elements describe the relationship between the two variables. Feeding the off-diagonal information 

into the model should improve model performance. 

[

𝑎11 𝑎12. . . 𝑎1𝑁

𝑎21 𝑎22. . . 𝑎2𝑁

𝑎𝑁 𝑎𝑁2. . . 𝑎𝑁𝑁

] × [

𝑎11 𝑎21. . . 𝑎𝑁1

𝑎12 𝑎22. . . 𝑎𝑁2

𝑎1𝑁 𝑎2𝑁 . . . 𝑎𝑁𝑁

] = [

𝑐𝑜𝑣(𝑋, 𝑋) 𝑐𝑜𝑣(𝑋, 𝑌) 𝑐𝑜𝑣(𝑋, 𝑍)
𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌, 𝑌) 𝑐𝑜𝑣(𝑌, 𝑍)
𝑐𝑜𝑣(𝑍, 𝑋) 𝑐𝑜𝑣(𝑍, 𝑌) 𝑐𝑜𝑣(𝑍, 𝑍)

] 

Step 5: Project the data onto new dimensions 

3.2.2 Improving Signal Noise Ratio (SNR) via PCA 

First, center the data. This is achieved by obtaining the z-scores. To do this, the explanatory 

variables are standardized and the average value is subtracted from the respective 𝑥𝑖 's to convert 

each  dimension into their respective z-scores. The centered data is then converted into the 

covariance matrix, on which the eigenfunction is applied.  

The dimensions have now been transformed into a new set of dimensions by a rotation of axes in 

a mathematical space producing two new dimensions called eigenvectors E1 and E2. These 

eigenvectors are the principal components.  

The eigenvectors are the directions in the original mathematical space where the maximum  

information content is captured. The amount of information each eigenvector captures (the 

variance across each eigenvector) is represented by the eigenvalues. 

The eigenvectors are on the axes at 90 degrees to each other (I.e. orthogonal), and contain all the 

information content and data points. Each eigenvector is associated with an eigenvalue and the 

number of dimensions in the original space determines the number of principal components.The 

covariance matrix of the eigenvectors are constructed. The diagonal elements have a value of 1 
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and explain all the information in the data. The off-diagonal elements, with a value of zero, have 

no information content.  

3.2.3 Algebraic Operations for PCA 

PCA is a type of Singular Value Decomposition (SVD) which involves breaking down or 

decomposing a larger value into smaller values. The covariance matrix (the larger singular value) 

is decomposed, after scaling the independent variables, into smaller values and their eigenvalues 

obtained. 

High dimensional data is difficult to analyze or visualize to identify hidden patterns. There is need 

to reduce the dimensionality so as to get better visualizations and results without losing most of 

the information. 

The central idea behind PCA is to reduce the dimensionality of a dataset consisting of many 

variables that are correlated with each other while retaining the variation present in the data set. 

This is done by transforming the variables to a new set of orthogonal variables known as principal 

components. The first principal component retains the greatest amount of variation present in the 

original variables, followed by the second principal component and the third, etc. in  decreasing 

order of  magnitude. 

3.2.4 SCALING 

Input variables in a data set may have different units e.g. Km, hrs, kg, etc i.e. different scales. 

Scaling the variables enables us to compare the variables on an equal level. One of the ways of 

scaling is normalization.  

Normalization: This makes all the values to lie between 0 and 1.   
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  y =  
(x −  min)

(max −  min)⁄  

Here  Y = Normalized variable; X = Variable of interest 

Standardization: In this method of scaling, the mean of observations is 0 and the standard deviation 

is 1.  

y =  
(x − mean)

std_dev⁄  

Where Y = standardized variable; X = variable of interest 

Mean = average of variable x; Std_dev = standard deviation of x 

4. RESULTS AND DISCUSSION 

There are 1,683,462 data points and 21 columns in the data set. All columns have non-null values 

and are numeric except the date column which is of object data type. Because summary statistics 

show very high maximum figures for some variables (Foreign reserves position  of 62,081.86) and 

rather low maximum figures for others (Savings rate of 4.28), there is need for scaling the data. 

For this, standardization and normalization can be used. 

Table 1.  Summary statistics 

Mean Std min 25% 50% 75% max  

167 38654.68515 8211.386882 23689.87 32952.845 37105.27 43382.795 62081.86 

36 7.921111 4.988639 0 4.3875 7.665 11.7425 16.71 

168 2.912083 0.984059 1.25 1.83 3.135 3.89 4.28 

168 3.812024 1.493069 0.78 2.6775 4.055 4.66 7.32 

168 7.648333 2.828773 1.64 6.1975 8.185 8.885 15.01 

168 8.312798 2.616935 2.74 6.535 8.755 9.6825 14.65 
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168 8.440655 2.889185 2.65 5.91 8.63 10.625 15.84 

168 8.275536 2.842299 3.53 5.64 8.015 10.575 16.47 

168 8.46131 2.390413 2.17 6.925 8.6 9.8025 14.13 

168 16.092679 2.029009 11.13 15.505 16.595 17.1025 19.66 

168 25.960179 3.651563 17.58 23.195 26.07 28.74 31.56 

120 231.691667 80.91535 130.19 159.3925 214.64 290.4225 411.52 

120 219.209583 74.970089 121.94 153.4575 201.715 276.5575 385.93 

167 5589.107066 2149.785464 1920.61 3843.425 5094 7472.71 10906.09 

167 4473.393593 1234.995921 2502.6 3521.24 4460.7 5182.925 8574.64 

167 4090.056587 1143.753746 2297.11 3185.865 4031.42 4760.115 7895.15 

167 10062.50114 2907.098262 5027.94 7710.385 9798.31 12404.85 17318.66 

167 1353.959042 1660.728018 -3480.64 0 1096.25 2367.97 5996.98 

Table 1 continued 

The distributions were checked for outliers. Distribution plots showed that Foreign reserve position 

and Crude oil price had outliers while Imports and Total trade were moderately right-skewed. 

Checking for correlations, we find high positive correlation between Crude oil price and the 

exchange rate (WDAS), as expected, Exports and WDAS and other expected positive correlations: 

low positive correlations between Exports and Time deposits. High negative correlation between 

Maximum lending rates and Exchange rates, as well between Foreign reserves position and 

Inflation; Low negative correlation between WDAS and Time deposits. 

Step 1: Scale the Data: For scaling, we opted for standardization using StandardScaler. 
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Table 2.  Scaled data 

0 1 2 3 4 5 6 7 8 9 ... 

0 -0.909678 1.900764 0.56179 0.609844 0.857696 

-

0.032701 1.248121 1.138751 1.083579 0.721851 

1 -0.91196 2.229664 0.564843 0.74827 1.786772 

-

0.083662 1.107051 1.10684 1.052917 0.704494 

2 -0.919328 2.577554 0.560994 0.946835 0.727584 0.028454 1.778814 1.050109 0.79996 0.444129 

3 -0.912272 2.70695 0.56033 1.409442 1.231766 0.059031 0.542769 1.18839 1.321205 0.940558 

4 -0.908951 2.507151 0.559799 1.7596 -0.565397 

-

0.155009 0.717428 1.160025 1.248384 0.982216 

…                     

11 12 13 14 15 16 17 18 19 20   

... 0.838627 

-

0.283089 

-

2.115039 

-

1.259678 -1.302885 0.930885 

-

0.974044 -0.957979 0.274591 1.785471 

... 0.89737 -0.25343 

-

2.142506 -1.25521 -1.287481 1.154541 

-

1.068278 -1.071578 0.399954 2.145067 

... 0.515544 

-

0.426444 

-

2.301817 

-

1.229396 -1.271542 1.132113 

-

0.187075 -0.246295 0.757719 1.46073 

... 1.44703 

-

0.347352 

-

2.117786 

-

1.227286 -1.254531 2.195067 -0.14334 -0.169098 1.562348 2.804183 

... 1.333742 

-

0.530252 

-

2.191948 

-

1.214876 -1.237788 1.966083 0.146031 0.209891 1.515949 2.292577 

 

Having scaled the data, we then applied Principal Component Analysis (PCA). Principal 

Component Analysis is a statistical procedure to convert observations of possibly correlated 

variables into new principal components such that these principal components: 

1. are uncorrelated with each other 

2. are linear combinations of the original variables 

3. capture maximum information. 

Step 2: Obtain covariance matrix 
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Covariance matrices were calculated after standardizing the data. Twelve non-null arrays were 

obtained as shown below. 

  

 

Fig 1.  Heat map 
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Step 3: Eigen Decomposition 

The covariance matrix was then decomposed into Eigenvalues and eigenvectors. Eigenvectors do 

not change direction when a linear transformation is performed on them. They simply scale the  

vector. The value of the scaled vector is called the eigenvalue and is denoted by lambda in the 

equation:  AV=ƛV 

Where : A is the transformation matrix; V is an eigenvector and  ƛ is an eigenvalue 

Table 3.  Covariance matrix 

array([[ 1.00598802,  0.        , -0.60425382, -0.44680882,  0.        , 

         0.57735796, -0.29159561, -0.18934486, -0.18348724, -0.041429  , 

         0.01955311, -0.07006487, -0.15079024,  0.68397935,  0.        , 

         0.        ], 

       [-0.60425382,  0.        ,  1.00598802,  0.7260656 ,  0.        , 

        -0.59037684,  0.40194705,  0.22379434,  0.21155808,  0.05021323, 

        -0.09769131,  0.13669106,  0.38833292, -0.79214124,  0.        , 

         0.        ], 

       [-0.44680882,  0.        ,  0.7260656 ,  1.00598802,  0.        , 

        -0.51975637,  0.23857122,  0.06219955,  0.07140967, -0.04141337, 

        -0.16670411, -0.01285407,  0.16164673, -0.56205364,  0.        , 

         0.        ], 

       [ 0.57735796,  0.        , -0.59037684, -0.51975637,  0.        , 

         1.00598802,  0.21353976,  0.40178964,  0.41707847,  0.53997711, 

         0.51530856,  0.23979216,  0.2402474 ,  0.60885901,  0.        , 

  

       [-0.29159561,  0.        ,  0.40194705,  0.23857122,  0.        , 

         0.21353976,  1.00598802,  0.92361744,  0.91184957,  0.85086453, 

         0.70333342,  0.54080883,  0.61081034, -0.34034546,  0.        , 
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         0.        ], 

       [-0.18934486,  0.        ,  0.22379434,  0.06219955,  0.        , 

         0.40178964,  0.92361744,  1.00598802,  0.9911884 ,  0.93995867, 

         0.809752  ,  0.60216186,  0.67776113, -0.21581329,  0.        , 

         0.        ], 

       [-0.18348724,  0.        ,  0.21155808,  0.07140967,  0.        , 

         0.41707847,  0.91184957,  0.9911884 ,  1.00598802,  0.96265395, 

         0.85162216,  0.63843588,  0.65139332, -0.19474609,  0.        , 

         0.        ], 

       [-0.041429  ,  0.        ,  0.05021323, -0.04141337,  0.        , 

         0.53997711,  0.85086453,  0.93995867,  0.96265395,  1.00598802, 

         0.92089509,  0.64380966,  0.58291804, -0.00775366,  0.        , 

         0.        ], 

       [ 0.01955311,  0.        , -0.09769131, -0.16670411,  0.        , 

         0.51530856,  0.70333342,  0.809752  ,  0.85162216,  0.92089509, 

         1.00598802,  0.73981609,  0.3468831 ,  0.07287045,  0.        , 

         0.        ], 

       [-0.07006487,  0.        ,  0.13669106, -0.01285407,  0.        , 

         0.23979216,  0.54080883,  0.60216186,  0.63843588,  0.64380966, 

         0.73981609,  1.00598802,  0.1211015 , -0.16953295,  0.        , 

         0.        ], 

       [-0.15079024,  0.        ,  0.38833292,  0.16164673,  0.        , 

         0.2402474 ,  0.61081034,  0.67776113,  0.65139332,  0.58291804, 

         0.3468831 ,  0.1211015 ,  1.00598802, -0.17887031,  0.        , 

         0.        ], 

       [ 0.68397935,  0.        , -0.79214124, -0.56205364,  0.        , 

         0.60885901, -0.34034546, -0.21581329, -0.19474609, -0.00775366, 

         0.07287045, -0.16953295, -0.17887031,  1.00598802,  0.        , 
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Each eigenvector has an eigenvalue. Eigenvalues determine the relative importance of the 

eigenvectors 

Step 4: Sort in decreasing order of eigenvalues and use Explained Variance use to select the 

number of components.Twelve of the components had non-null values as shown in Table 5. 

Table 4.  Eigenvalues 

array ([5.70681838, 3.61602839, 1.00256536, 0.59003164, 0.3916685 , 

         0.25394989, 0.1987761 , 0.13985333, 0.09354223, 0.04579133, 

         0.00942869, 0.02340245, 0.        , 0.        , 0.        , 

         0.        , 0.        , 0.        , 0.        , 0.        , 

         0.        ]) 

  

Table 5.  Explained variance 

1 [47.27374353516036,   7  1.646607554141368, 

2  29.95420344227172,   8  1.1585072268921324, 

3  8.30498093444442,   9   0.7748785989010428, 

4  4.887662850156739,   10  0.37932301735138196, 

5  3.244476155859624,   11  0.07810468822742336, 

6  2.103652379359654,   12  0.19385961723414977, 
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Table 6.  Cumulative variance explained 

array ([ 47.27374354,  77.22794698,  85.53292791,  90.42059076, 

          93.66506692,  95.7687193 ,  97.41532685,  98.57383408, 

          99.34871268,  99.72803569,  99.80614038, 100.        , 

         100.        , 100.        , 100.        , 100.        , 

         100.        , 100.        , 100.        , 100.        , 

          100.        ]) 

 

Using the Elbow method, the graph indicates that the first twelve components explain almost all 

the variance in the data. In fact the first five components are enough to explain about 95% variance 

in the data. So we can now project our data on five components instead of 21, thus reducing the 

dimension of the data. We could still go further to project on the first three components to achieve 

more than 70% variance. Explained Variance was used to select the number of components. 

Fig 2.   Cumulative explained variance 

 

Number of PCs that explain at least 70 variance: 3 
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This provides the optimal number of explanatory variables to be used in modelling the determinants of 

Naira/US Dollar currency exchange rates. For even more robust outcomes, the graph indicates that 5 

principal components explain more than 90 percent of the variance. 

Step 5. Rearrange the original data on the final components and project the data into lower dimensions. 

 

Fig 3. Scatterplot of new features 
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Table 7.Data projected onto lower dimensions 

  Pc1 Pc2 Pc3 Pc4 Pc5     Pc1 Pc2 Pc3 Pc4 Pc5 

0 -0.249 0.048 0.211 0.033 0.471   11 0.131 0.243 0.082 0.443 -0.028 

1 0.243 0.13 -0.076 0.357 0.362   12 0.138 0.201 0.108 -0.488 -0.191 

2 0.33 -0.073 -0.047 -0.141 -0.216   13 -0.305 0.058 0.26 -0.015 0.263 

3 0.307 -0.136 0.118 -0.145 0.231   14 -0.236 0.062 0.154 -0.322 0.031 

4 -0.004 -0.047 -0.026 -0.033 0.094   15 -0.238 0.062 0.156 -0.321 0.02 

5 -0.187 0.271 0.26 -0.052 0.193   16 0.32 -0.133 0.099 -0.186 0.289 

6 0.213 0.297 0.058 -0.113 -0.093   17 0.108 -0.242 0.506 0.153 -0.164 

 7 0 .167 0.348 0.082 -0.071 -0.087   18 0.109 -0.237 0.522 0.132 -0.135 

8 0.167 0.351 0.101 -0.045 -0.064   19 0.283 -0.201 0.288 -0.073 0.144 

9 0.109 0.37 0.148 -0.008 0.005   20 0.276 -0.028 -0.237 -0.228 0.471 

10 0.064 0.357 0.11 0.183 0.034               

 

5. CONCLUSION 

The determinants of currency exchange rate of the Naira/US Dollar was modeled in this study. 

Monthly data on some major determinants of exchange rates in the extant literature were obtained 

from Central Bank of Nigeria statistical database for the years 2008-2021. Because of the vary 

large number of factors indicated as determinants of Naira/US Dollar currency exchange rates, and 

also because many of these macro-economic variables  are highly correlated and present the 

problem of multicollinearity, Principal Component Analysis (PCA) was applied to the data in order 

to eliminate the problems of multicollinearity, redundancy in explanatory variables and high 

dimensionality. Machine Learning tools and Python computer language were deployed in the 

analyses to drastically reduce the number of components from twenty-one to five. It was in fact 

found that the number of principal components that explain at least seventy percent of the variance 

was just three, while five principal components adequately explained more than ninety percent of 

the variance.The implication is that in future research, three major explanatory variables would be 
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sufficient to analyse the determinants of currency exchange rates in Nigeria, and, if extra 

robustness is required, five principal components should be more than adequate. 
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